Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 473
Filtrar
1.
Biointerphases ; 19(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38526056

RESUMO

Bletilla striata polysaccharide (BSP) and chitosan (CS) were chemically cross-linked using oxalyl chloride to prepare a composite hemostatic sponge (BSP-CS), and the process parameters were optimized using the Box-Behnken design (BBD) with response surface methodology. To optimize the performance of the hemostatic sponge, we adjusted the ratio of independent variables, the amount of oxalyl chloride added, and the freeze-dried volume. A series of evaluations were conducted on the hemostatic applicability of BSP-CS. The characterization results revealed that BSP-CS had a stable bacteriostatic effect on Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa within 72 h, and the bacteriostatic rate was above 30%. The CCK-8 cytotoxicity test demonstrated that BSP-CS had a certain effect on promoting cell proliferation of L929 cells. In the mouse tail-cutting experiment, the hemostasis time of BSP-CS was 463.0±38.16 s, shortened by 91.3 s on average compared with 554.3±34.67 s of the gauze group. The blood loss of the BSP-CS group was 28.47±3.74 mg, which was 34.7% lower than that of the control gauze group (43.6±3.83 mg). In the in vitro coagulation experiment, the in vitro coagulation index of the BSP-CS group was 97.29%±1.8%, which was reduced to 8.6% of the control group. The CT value of the BSP-CS group was 240±15 s, which was 155 s lower than that of the gauze group (355±31.22 s). All characterization results indicate that BSP-CS is an excellent hemostatic material.


Assuntos
Quitosana , Cloretos , Hemostáticos , Orchidaceae , Oxalatos , Camundongos , Animais , Hemostáticos/farmacologia , Hemostáticos/química , Quitosana/farmacologia , Quitosana/química , Hemostasia , Polissacarídeos/farmacologia , Polissacarídeos/química , Orchidaceae/química
2.
J Mater Chem B ; 12(14): 3453-3468, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38505998

RESUMO

In this work, we have demonstrated agar and oxidized bacterial cellulose cryogels as a potential hemostatic dressing material. TEMPO-oxidized bacterial cellulose (OBC) was incorporated into the agar matrix, improving its mechanical and hemostatic properties. The oxidation of bacterial cellulose (BC) was evidenced by chemical characterization studies, confirming the presence of carboxyl groups. The in vitro blood clotting test conducted on agar/OBC composite cryogels demonstrated complete blood clotting within 90 seconds, indicating their excellent hemostatic efficacy. The cryogels exhibited superabsorbent properties with a swelling degree of 4200%, enabling them to absorb large amounts of blood. Moreover, the compressive strength of the composite cryogels was appreciably improved compared to pure agar, resulting in a more stable physical structure. The platelet adhesion test proved the significant ability of the composite cryogels to adhere to and aggregate platelets. Hemocompatibility and cytocompatibility tests have verified the safety of these cryogels for hemostatic applications. Finally, the material exhibited remarkable in vivo hemostatic performance, achieving clotting times of 64 seconds and 35 seconds when tested in the rat tail amputation model and the liver puncture model, respectively. The experiment results were compared with those of commercial hemostat, Axiostat, and Surgispon, affirming the potential of agar/OBC composite cryogel as a hemostatic dressing material.


Assuntos
Celulose Oxidada , Hemostáticos , Ratos , Animais , Hemostáticos/farmacologia , Hemostáticos/química , Celulose Oxidada/farmacologia , Criogéis/farmacologia , Criogéis/química , Ágar , Celulose/farmacologia
3.
ACS Appl Mater Interfaces ; 16(12): 14520-14532, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38483252

RESUMO

The development of shape-memory hemostatic agents is crucial for the treatment of deep incompressible bleeding tissue. However, there are few reports on biomaterials that can monitor bacterial infection at the wound site in real time following hemostasis and effectively promote repair. In this study, we propose a multifunctional QCSG/FLZ cryogel composed of glycidyl methacrylate-functionalized quaternary chitosan (QCSG), fluorescein isothiocyanate (FITC), and a lysozyme (LYZ)-modified zeolitic imidazolate framework (ZIF-8) for incompressible bleeding tissue hemostasis and wound repair. QCSG/FLZ cryogels possess interconnected microporous structure and enhanced mechanical properties, allowing them to be molded into different shapes for effective hemostasis in deep incompressible wounds. Furthermore, the fluorescence quench signal of QCSG/FLZ cryogels enables timely monitoring of bacterial infection when wound triggers infection. Meanwhile, the acidic microenvironment of bacterial infection induces structural lysis of ZIF-8, releasing LYZ and Zn2+, which effectively kill bacteria and accelerate wound repair. In conclusion, our study not only provides potential application of QCSG/FLZ cryogels for hemostasis in deep incompressible wounds but promisingly promotes the development of a tissue repair technique.


Assuntos
Infecções Bacterianas , Quitosana , Hemostáticos , Humanos , Criogéis/química , Hemostáticos/química , Hemostasia , Quitosana/química , Hemorragia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química
4.
ACS Appl Mater Interfaces ; 16(10): 12321-12331, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38431875

RESUMO

Apart from single hemostasis, antibacterial and other functionalities are also desirable for hemostatic materials to meet clinical needs. Cationic materials have attracted great interest for antibacterial/hemostatic applications, and it is still desirable to explore rational structure design to address the challenges in balanced hemostatic/antibacterial/biocompatible properties. In this work, a series of cationic microspheres (QMS) were prepared by the facile surface modification of microporous starch microspheres with a cationic tannic acid derivate, the coating contents of which were adopted for the first optimization of surface structure and property. Thermoresponsive gels with embedded QMS (F-QMS) were further prepared by mixing a neutral thermosensitive polymer and QMS for second structure/function optimization through different QMS and loading contents. In vitro and in vivo results confirmed that the coating content plays a crucial role in the hemostatic/antibacterial/biocompatible properties of QMS, but varied coating contents of QMS only lead to a classical imperfect performance of cationic materials. Inspiringly, the F-QMS-4 gel with an optimal loading content of QMS4 (with the highest coating content) achieved a superior balanced in vitro hemostatic/antibacterial/biocompatible properties, the mechanism of which was revealed as the second regulation of cell-material/protein-material interactions. Moreover, the optimal F-QMS-4 gel exhibited a high hemostatic performance in a femoral artery injury model accompanied by the easy on-demand removal for wound healing endowed by the thermoresponsive transformation. The present work offers a promising approach for the rational design and facile preparation of cationic materials with balanced hemostatic/antibacterial/biocompatible properties.


Assuntos
Hemostáticos , Polifenóis , Hemostáticos/farmacologia , Hemostáticos/química , Microesferas , Hemostasia , Antibacterianos/farmacologia , Antibacterianos/química , Géis/farmacologia , Amido/química
5.
J Mater Sci Mater Med ; 35(1): 15, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456966

RESUMO

Accidental events or surgical procedures usually lead to tissue injury. Fibrin sealants have proven to optimize the healing process but have some drawbacks due to their allogeneic nature. Autologous fibrin sealants present several advantages. The aim of this study is to evaluate the performance of a new autologous fibrin sealant based on Endoret®PRGF® technology (E-sealant). One of the most widely used commercial fibrin sealants (Tisseel®) was included as comparative Control. E-sealant´s hematological and biological properties were characterized. The coagulation kinetics and the microstructure were compared. Their rheological profile and biomechanical behavior were also recorded. Finally, the swelling/shrinkage capacity and the enzymatic degradation of adhesives were determined. E-sealant presented a moderate platelet concentration and physiological levels of fibrinogen and thrombin. It clotted 30 s after activation. The microstructure of E-sealant showed a homogeneous fibrillar scaffold with numerous and scattered platelet aggregates. In contrast, Control presented absence of blood cells and amorphous protein deposits. Although in different order of magnitude, both adhesives had similar rheological profiles and viscoelasticity. Control showed a higher hardness but both adhesives presented a pseudoplastic hydrogel nature with a shear thinning behavior. Regarding their adhesiveness, E-sealant presented a higher tensile strength before cohesive failure but their elastic stretching capacity and maximum elongation was similar. While E-sealant presented a significant shrinkage process, Control showed a slight swelling over time. In addition, E-sealant presented a high enzymatic resorption rate, while Control showed to withstand the biodegradation process in a significant way. E-sealant presents optimal biochemical and biomechanical properties suitable for its use as a fibrin sealant with regenerative purposes.


Assuntos
Hemostáticos , Adesivos Teciduais , Adesivo Tecidual de Fibrina/química , Adesivos Teciduais/química , Medicina Regenerativa , Hemostáticos/química , Cicatrização
6.
Biomater Sci ; 12(7): 1883-1897, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38416049

RESUMO

Effective hemostatic materials have been in demand for rapid pre-hospital hemostasis in emergency situations, which can significantly reduce accidental deaths. The development of emergency hemostatic materials with rapid hemostasis, biosafety, and economical preparation is a great challenge. In this study, Ca(OH)2-complexed diatom powder hemostatic particles (Ca(OH)2-Php) were prepared based on a one-pot reaction by directly mixing various raw materials and by rotary granulation. High-temperature calcination was able to carbonate and consume the organic matter in the hemostatic particles. The crosslinked hydrogen bonds in those particles were converted to silica-oxygen bonds, the particles became more stable, and the porous structure of diatom biosilica (DBs) was exposed. Ca(OH)2-Php has high porosity, can quickly adsorb the water in blood (water absorption: 75.85 ± 6.93%), and exhibits rapid hemostasis capacity (clotting time was shortened by 43% compared with that of the control group), good biocompatibility (hemolysis rate <7%, no cytotoxicity), and simplicity of handling (conveniently debride, no residues, no tissue inflammation). This study provides a new idea for the preparation of emergency hemostatic materials, and Ca(OH)2-Php prepared by one-pot reaction has various high-quality characteristics including rapid hemostasis, wide applicability, economical preparation, and potential for large-scale production.


Assuntos
Diatomáceas , Hemostáticos , Hemostáticos/farmacologia , Hemostáticos/química , Coagulação Sanguínea , Hemostasia , Água/química
7.
Adv Sci (Weinh) ; 11(16): e2308538, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350723

RESUMO

Underwater adhesives with injectable, organic solvent-free, strong, fast adhesion, and hemostatic properties have become an urgent need in biomedical field. Herein, a novel polyurethane underwater adhesive (PUWA) inspired by mussels is developed utilizing the rapid post-cure reaction of isocyanate esterification without organic solvents. The PUWA is created through the injectable two component curing process of component A (biocompatible polyurethane prepolymer) and component B (dopamine modified lysine derivatives: chain extender-LDA and crosslinker-L3DA). The two-component adhesive cures quickly and firmly underwater, with an impressive bonding strength of 40 kPa on pork skin and excellent burst pressure of 394 mmHg. Moreover, the PUWA exhibits robust adhesion strength in hostile environments with acid, alkali and saline solutions. Combined with excellent biocompatibility and hemostatic performance, the PUWA demonstrates effectively sealing wounds and promoting healing. With the ability to bond diverse substrates rapidly and strongly, the PUWA holds significant potential for application in both biomedical and industrial fields.


Assuntos
Adesivos , Hemostáticos , Poliuretanos , Poliuretanos/química , Animais , Adesivos/química , Hemostáticos/química , Hemostáticos/farmacologia , Teste de Materiais , Cicatrização/efeitos dos fármacos , Materiais Biocompatíveis/química , Suínos , Adesivos Teciduais/química
8.
ACS Appl Mater Interfaces ; 16(8): 10565-10579, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38377563

RESUMO

Post-traumatic hemorrhage, which can result from accidents or battlefield injuries, is a significant global concern due to the high prehospital mortality rate. Substantial efforts have been made to develop hemostatic agents that can effectively reduce hemorrhage in the immediate aftermath of a traumatic event. The present study investigated the potential efficacy of Ca2+ and Zn2+ supplemented sodium alginate-based dry hemostatic particles (SA-CZ DHP) to manage excessive blood loss or post-traumatic hemorrhage. SA-CZ DHP were developed, followed by their physical and biochemical characterization, cytocompatibility and hemocompatibility testing, and critical evaluation of the hemostatic potential in vitro and in vivo. The safe SA-CZ DHP showed high absorption and accelerated blood clotting kinetics with reduced coagulation time (≈70%, p < 0.0001) in whole human blood, observed with insignificant hemolysis and uninterrupted RBC morphology. SA-CZ DHP significantly reduced the mean blood loss (≈90% in SD rats tail incision), and bleeding time (≈60% in BALB/c mice tail incision) was at par with commercially available Celox hemostatic granules. In conclusion, the biocompatible SA-CZ DHP exhibited rapid and effective management of excessive blood loss. It is also pertinent to note that the developed formulation could be a cost-effective alternative to its commercial counterparts.


Assuntos
Hemostáticos , Camundongos , Ratos , Humanos , Animais , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Hemostáticos/química , Alginatos/uso terapêutico , Alginatos/farmacologia , Cálcio , Zinco/uso terapêutico , Zinco/farmacologia , Ratos Sprague-Dawley , Hemorragia/tratamento farmacológico , Hemostasia
9.
Int J Biol Macromol ; 260(Pt 1): 129489, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242399

RESUMO

Effective control of wound bleeding and sustained promotion of wound healing remain a major challenge for hemostatic materials. In this study, the hemostatic sponge with controllable antibacterial and adjustable continuous promotion of wound healing (CMNCu) was prepared by chitosan, aminated MXene and copper ion. Interestingly, the internal topological point-line-surface interaction endowed the CMN-Cu sponge longitudinal staggered tubular porous microstructure, combined with the lipophilic properties obtained by modified MXene, which greatly improved its flexibility, wet elasticity and blood enrichment capacity. In addition, the sponge achieved controlled release of active ingredients, which made it present highly effective antibacterial activity and long-lasting ability to promote wound healing. In vitro and in vivo experiments confirmed that CMN-Cu sponge presented high-efficient hemostatic performance. Last but not least, a series of cell experiments showed that the CMN-Cu sponge had excellent safety as a hemostatic material.


Assuntos
Quitosana , Hemostáticos , Nitritos , Elementos de Transição , Hemostáticos/farmacologia , Hemostáticos/química , Quitosana/farmacologia , Quitosana/química , Cobre/farmacologia , Hemostasia , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/química
10.
Carbohydr Polym ; 327: 121679, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171689

RESUMO

Management of noncompressible torso hemorrhage is an urgent clinical requirement, desiring biomaterials with rapid hemostasis, anti-infection and excellent resilient properties. In this research, we have prepared a highly resilient cryogel with both hemostatic and antibacterial effects by chemical crosslinking and electrostatic interaction. The network structure crosslinked by quaternized chitosan and genipin was interspersed with oxidized bacterial cellulose after lyophilization. The as-prepared cryogel can quickly return to the original volume when soaking in water or blood. The appropriately sized pores in the cryogel help to absorb blood cells and further activate coagulation, while the quaternary ammonium salt groups on quaternized chitosan inhibit bacterial infections. Both cell and animal experiments showed that the cryogel was hypotoxic and could promote the regeneration of wound tissue. This research provides a new pathway for the preparation of double crosslinking cryogels and offers effective and safe biomaterials for the emergent bleeding management of incompressible wounds.


Assuntos
Celulose Oxidada , Quitosana , Hemostáticos , Animais , Criogéis/química , Quitosana/farmacologia , Quitosana/química , Celulose Oxidada/farmacologia , Cicatrização , Hemostáticos/farmacologia , Hemostáticos/química , Hemorragia/tratamento farmacológico , Materiais Biocompatíveis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química
11.
Int J Biol Macromol ; 256(Pt 2): 128505, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040147

RESUMO

Developing wound dressings with solid adhesive properties that enable efficient, painless hemostasis and prevent wound infection remain a huge challenge. Herein, the tris(hydroxymethyl) methyl glycine-modified chitosan derivative (CTMG) was prepared and freeze-dried after simply adjusting the concentration of CTMG to obtain the chitosan-based gel sponge with desired multi-hollow structure, special antibacterial and biocompatibility. The adhesion strength on porcine skin was impressive up to 113 KPa, much higher than fibrin glue. It can withstand the pressure that far exceeds blood pressure. CTMG exhibits bacteriostatic abilities as demonstrated in a bacteriostatic assay, and alongside biocompatibility, as shown in cytotoxicity and hemolytic assays. Moreover, CTMG gel sponge showed hemostatic properties in both in vivo and in vitro hemostasis experiments. During an experiment on liver hemorrhage in rats, CTMG gel sponge proved to be more effective in controlling bleeding than other hemostatic sponges available on the market, indicating its promising hemostatic properties. CTMG gel sponge possesses the potential to function as a wound dressing and hemostatic material, making it suitable for various clinical applications.


Assuntos
Quitosana , Hemostáticos , Suínos , Ratos , Animais , Quitosana/farmacologia , Quitosana/química , Hemostasia , Hemostáticos/farmacologia , Hemostáticos/química , Bandagens , Hemorragia/tratamento farmacológico , Antibacterianos/farmacologia
12.
Int J Biol Macromol ; 257(Pt 1): 128561, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056735

RESUMO

Acute bleeding following accidental injury is a leading cause of mortality. However, conventional hemostatic bandages impede wound healing by inducing excessive blood loss, dehydration, and adherence to granulation tissue. Strategies such as incorporating active hemostatic agents and implementing chemical modifications can augment the properties of these bandages. Nevertheless, the presence of remote thrombosis and initiators may pose risks to human health. Here, a hemostatic bandage was developed by physically combined chitosan nonwoven fabric, calcium alginate sponge, and adenosine diphosphate. The presented hemostatic bandage not only exhibits active and passive mechanisms for promoting clotting but also demonstrates excellent mechanical properties, breathability, ease of removal without causing damage to the wound bed or surrounding tissues, as well as maintaining an optimal moist environment conducive to wound healing. In vitro evaluation results indicated that the hemostatic bandage possesses favorable cytocompatibility with low levels of hemolysis. Furthermore, it effectively aggregates various blood cells while activating platelets synergistically to promote both extrinsic and intrinsic coagulation pathways. In an in vivo rat model study involving liver laceration and femoral artery injury scenarios, our developed hemostatic bandage demonstrated rapid clot formation capabilities along with reduced blood loss compared to commercially available fabrics.


Assuntos
Quitosana , Hemostáticos , Ratos , Humanos , Animais , Quitosana/química , Difosfato de Adenosina , Alginatos , Hemorragia , Bandagens , Hemostáticos/farmacologia , Hemostáticos/química
13.
J Mech Behav Biomed Mater ; 150: 106240, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37992582

RESUMO

Hemostatic materials are of great significance for rapid control of bleeding, especially in military trauma and traffic accidents. Chitosan (CS) hemostatic sponges have been widely concerned and studied due to their excellent biocompatibility. However, the hemostatic performance of pure chitosan sponges is poor due to the shortcoming of strong rigidity. In this study, CS and hydroxypropylmethylcellulose (HPMC) were combined to develop a safe and effective hemostatic composite sponges (CS/HPMC) for hemorrhage control by a simple mixed-lyophilization strategy. The CS/HPMC exhibited excellent flexibility (the flexibility was 74% higher than that of pure CS sponges). Due to the high porosity and procoagulant chemical structure of the CS/HPMC, it exhibited rapid hemostatic ability in vitro (BCI was shortened by 50% than that of pure CS sponges). The good biocompatibility of the obtained CS/HPMC was confirmed via cytotoxicity, hemocompatibility and skin irritation tests. The CS/HPMC can induced the erythrocyte and platelets adhesion, resulting in significant coagulation acceleration. The CS/HPMC had excellent performance in vivo assessments with shortest clotting time (40 s) and minimal blood loss (166 mg). All above results proved that the CS/HPMC had great potential to be a safe and rapid hemostatic material.


Assuntos
Quitosana , Hemostáticos , Humanos , Hemostáticos/farmacologia , Hemostáticos/química , Quitosana/farmacologia , Quitosana/química , Derivados da Hipromelose/farmacologia , Hemostasia , Coagulação Sanguínea , Hemorragia
14.
Int J Biol Macromol ; 257(Pt 1): 128299, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38008144

RESUMO

Bleeding from uncontrollable wounds can be fatal, and the body's clotting mechanisms are unable to control bleeding in a timely and effective manner in emergencies such as battlefields and traffic accidents. For irregular and inaccessible wounds, hemostatic materials are needed to intervene to stop bleeding. Hemostatic microspheres are promising for hemostasis, as their unique structural features can promote coagulation. There is a wide choice of materials for the preparation of microspheres, and the modification of natural macromolecular materials such as chitosan to enhance the hemostatic properties and make up for the deficiencies of synthetic macromolecular materials makes the hemostatic microspheres multifunctional and expands the application fields of hemostatic microspheres. Here, we focus on the hemostatic mechanism of different materials and the preparation methods of microspheres, and introduce the modification methods, related properties and applications (in cancer therapy) for the structural characteristics of hemostatic microspheres. Finally, we discuss the future trends of hemostatic microspheres and research opportunities for developing the next generation of hemostatic microsphere materials.


Assuntos
Quitosana , Hemostáticos , Humanos , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Hemostáticos/química , Microesferas , Hemostasia , Coagulação Sanguínea , Quitosana/química , Hemorragia
15.
Int J Biol Macromol ; 254(Pt 2): 127821, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926326

RESUMO

Excessive bleeding and bacterial infection leading to death is a major concern worldwide, particularly in cases of deep and narrow noncompressible hemorrhage. Herein, a novel Janus cryogel with anisotropic surface wettability, antibacterial activity, and rapid shape recovery was designed by constructing a hydrophilic porous cryogel using chitosan (CS), acacia gum (AG), and quaternized mesoporous bioglass (QMBG), with subsequent surface hydrophobic modification using octadecanol. The asymmetric hydrophobic surface modification of octadecanal endowed OCAQ with outstanding antiblood and antibacterial permeability, effectively preventing blood outflow and the invasion of bacteria to the wound. The hydrophilic parts with interconnected macroporous structure give the cryogel with ultra-high water uptake (5167 ± 182 %) and rapid water-trigged shape recover ability (≈2.1 s). The presence of active CS, AG, and QMBG in cryogel contributes to its exceptional blood clotting ability. Janus cryogel presents outstanding hemostatic performance (0.14 ± 0.03 g) in rat's liver injury model. Moreover, Janus cryogel exhibits excellent antibacterial properties due to the combination of its hydrophobic surface and antimicrobial quaternary amine groups. Meanwhile, the Janus cryogel has favorable hemocompatibility and biocompatibility. A Therefore, the Janus cryogel will become a candidate with great potential for clinical application of noncompressible wound as a multifunctional dressing.


Assuntos
Quitosana , Hemostáticos , Ratos , Animais , Quitosana/química , Criogéis/química , Molhabilidade , Cicatrização , Hemostasia , Hemostáticos/farmacologia , Hemostáticos/química , Antibacterianos/farmacologia , Antibacterianos/química , Hemorragia , Água/farmacologia
16.
Int J Biol Macromol ; 258(Pt 1): 128948, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38143056

RESUMO

The ideal hemostatic agents should be able to stop bleeding quickly and avoid secondary bleeding caused by adhesion with blood clots during dressing change. Herein, a hydrophobic electrospun nanofiber membrane was prepared for achieving hemostasis, rationally targeting both attributes, via doping N-alkylated chitosan (N-CS) grafted with octadecyl into chitosan/polyethylene oxide (PEO). In vitro and in vivo coagulation tests showed that CPNs doped with small amounts of N-CS (CPN31) could significantly shorten hemostasis time and promote the formation of more stable and stronger blood clots. In particular, the whole blood clotting time of CPN31 (58.8 ± 2.2 s) was significantly lower than that of chitosan/PEO (CPN0) nanofiber membrane (67 ± 3.5 s) and the medical sterile gauze (86.7 ± 0.6 s). Furthermore, due to the hemophobic nature of CPNs, blood wetting of the dressing was severely limited and blood can coagulated at the site of liver injury in rats, thus reducing blood loss and allowing rapid removal of the dressing without triggering secondary hemorrhage. The CPN31 exhibited excellent hemostasis properties, easy to remove, blood compatibility, biocompatibility and promoting fibroblast proliferation properties. This hydrophobic CPNs is a promising biological adhesive for hemorrhage control.


Assuntos
Quitosana , Hemostáticos , Nanofibras , Trombose , Ratos , Animais , Quitosana/química , Polietilenoglicóis/farmacologia , Nanofibras/química , Hemostasia , Hemostáticos/química , Hemorragia , Fígado
17.
Carbohydr Polym ; 326: 121614, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142075

RESUMO

Massive bleeding control plays the main role in saving people's lives in emergency situations. Herein, modified cellulose-based nanocomposite sponges by polydopamine (PDA) and laponite nano-clay was developed to sturdily deal with non-compressible lethal severe bleeding. PDA accomplishes supreme adhesion in the bleeding site (∼405 kPa) to form strong physical barrier and seal the position. Sponges super porous (∼70 % porosity) and super absorbent capacity (48 g blood absorbed per 1 g sponge) by concentrating the blood cells and platelets provides the requirements for primary hemostasis. Synergistically, the nanocomposite sponges' intelligent chemical structure induces hemostasis by activation of the XI, IX, X, II and FVII factors of intrinsic and extrinsic coagulation pathways. Excellent hemostatic performance of sponges in-vitro was assessed by RBC accumulation (∼100 %), blood clotting index (∼10 %), platelet aggregation/activation (∼93 %) and clotting time. The nanocomposite sponges depicted super performance in the fatal high-pressure non-compressible hemorrhage model by reducing of >2, 15 and 3 times in the bleeding amount at New Zealand rabbit's heart and liver, and rat's femoral artery bleeding models, respectively compared to commercial hemostatic agents (Pvalue˂0.001). The in-vivo host response results exhibited biosafety with no systemic and significant local inflammatory response by hematological, pathological and biochemical parameters assessments.


Assuntos
Hemostáticos , Nanocompostos , Humanos , Coelhos , Ratos , Animais , Adesivos/farmacologia , Argila , Ácido Cítrico , Hemostasia , Hemostáticos/química , Hemorragia/tratamento farmacológico , Celulose/farmacologia , Celulose/química , Nanocompostos/química
18.
Biomater Sci ; 11(23): 7469-7488, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37873611

RESUMO

The occurrence of uncontrolled hemorrhage is a significant threat to human life and health. Although hemostatic materials have made remarkable advances in the biomaterials field, it remains a challenge to develop safe and effective hemostatic materials for global medical use. Natural clay minerals (CMs) have long been used as traditional inorganic hemostatic agents due to their good hemostatic capability, biocompatibility and easy availability. With the advancement of science, technology and ideology, CM-based hemostatic materials have undergone continuous innovations by integrating new inspirations with conventional concepts. This review systematically summarizes the hemostatic mechanisms of different natural CMs based on their nanostructures. Moreover, it also comprehensively reviews the latest research progress for CM-based hemostatic hybrid and nanocomposite materials, and discusses the challenges and developments in this field.


Assuntos
Hemostáticos , Nanocompostos , Humanos , Hemostáticos/química , Argila , Hemostasia , Materiais Biocompatíveis/química , Minerais
19.
Int J Biol Macromol ; 253(Pt 8): 127608, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37879584

RESUMO

Uncontrolled bleeding that occurs during surgery, trauma, and in combat conditions is critical and require immediate action. Chitosan is a polysaccharide, obtained from natural sources with unique biological properties. It is often used as basis for local hemostatic agents (LHA). We summarized the data on hemostatic properties of chitosan, commercially available chitosan-based products with focus in the field of chemical modification of chitosan. Various approaches are used to enhance hemostatic activity of chitosan-based materials. The approach with chemical modification of chitosan allows changing the properties of the polymer in order to obtain an active macromolecule that contributes to hemostasis. Ongoing research on the mechanism of interaction with blood components in the case of different chitosan derivatives will make it possible to identify promising directions for chemical modification to obtain an effective LHA.


Assuntos
Quitosana , Hemostáticos , Humanos , Hemostáticos/farmacologia , Hemostáticos/química , Quitosana/farmacologia , Quitosana/química , Hemostasia , Hemorragia/tratamento farmacológico , Polímeros/farmacologia
20.
Int J Biol Macromol ; 253(Pt 6): 127295, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37806413

RESUMO

Excessive bleeding is the leading cause of death in accidents and operations. Ca2+ crosslinked carboxyl nanocellulose (CN)/montmorillonite (MMT) composite (CaCNMMT) sponges were prepared by uniform mixing and directional freeze-drying methods which was inspired by the coordination mechanism of blood clot formation and coagulation cascade activation in natural hemostasis process. Carboxyl nanocellulose (CaCN) sponge has instantaneous water absorption capacity, and CaCNMMT sponges could further activate clotting factors. Therefore, CaCNMMT sponges achieved quick hemostasis by efficient concentrating blood, inducing hemocyte aggregation and stimulating coagulation cascade activation based on the synergistic effects of CN and MMT. Blood clotting index of CaCNMMT (15.90 ± 0.52 %) was significantly lower than CaCN (59.3 ± 1.43 %), and APTT time (22 ± 2 s) was almost equivalent to MMT (20 ± 2 s). CaCNMMT sponge showed good quick hemostatic effect on massive hemorrhage in both tail-breaking and liver injury model which provided a new strategy for the application of MMT in hemostatic and trauma treatment fields.


Assuntos
Celulose , Hemostáticos , Humanos , Celulose/farmacologia , Celulose/química , Porosidade , Hemostasia , Hemostáticos/farmacologia , Hemostáticos/química , Coagulação Sanguínea , Hemorragia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...